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A method for finding the temperature fields and for identifying the condi- 
tions of heat exchange for constructions with coordinate- and time-dependent 
boundary conditions is presented. Inverse problems are reduced to systems 
of convolution-type integral equations. 

A problem arising in the development of complicated constructions is the problem of 
determining and setting admissible operating conditions of the structures for diverse ther- 
mal perturbations. 

Calculations and experiments are used to find the temperature fields and stress-strain 
states and the limiting values of the criterional parameters of parts of the constructions. 
As a rule, the calculations of complicated constructions must be calibrated with the help 
of special experiments, only a limited number of direct experiments, and in a simplified 
form that does not encompass all the diverse thermal perturbations, can be performed. 

For this reason, it is useful to reduce the experimental data directly to real operat- 
ing conditions and to formulate requirements on the form and volume of the minimum neces- 
sary experiments. This can be done reliably and economically by experimental-theoretical 
methods. 

The experimental-theoretical method and the TEZIS program which implements it on a 
computer [i, 2] are intended for determining the temperature fields of constructions and 
for identifying the boundary conditions of heat transfer, including in the case of time- 
dependent temperature and heat-emission coefficients of the medium. They make it possible 
to compare two experiments using an integral equation 

gl * v2 = g~ ~ v l  ( 1 ) 

o r  t h e  more g e n e r a l  e q u a t i o n  

A g l  * v~ = g~ , Vl + (hg2) ~ gx, 

where 
T 

g �9 v = f g ( T  - -  ~ )  v(~o) dco = v ~ g; 
O 

(2) 

gl = gm( k, T) is the response (temperature field) of the construction to the perturbation 
v I = Vm(~) (change in time of the temperature of the surface, the heat flux, or tempera- 
ture of the medium with a constant coefficient of heat emission e); g2 = g2( k, ~) is the 
response to a perturbation v 2 = v2(T) ; and, A and H are functions which are determined by 
the heat-emission coefficients. 

In Eq. (i) the unknown can be any of the four functions, and because the convolution 
is commutative the responses and perturbations (effects and causes) can be interchanged. 
This problem is interpreted as a problem with one input. 

The method requires that a number of conditions by satisfied. The heat-conduction 
problem is assumed to be homogeneous and internally linear. The thermophysical properties 
of the structural parts (which need not be known) must be the same in both experiments 
(within the limits of thermal similarity), and the initial temperature must be reduced to 
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zero. It is important that in the boundary conditions the spatial distribution of the ex- 
ternal perturbations, for example, the distribution of the temperature profiles on the sur- 
face, must exhibit similarity. This is usually achieved by working with the average sur- 
face temperature in zones determining the temperature of the internal elements of interest, 
but in the general case a different treatment is allowed. 

In the experimental-theoretical method of determining the temperature fields of con- 
structions under coordinate- and time-dependent boundary conditions the solution of the 
problem can be written in the form of a system of integral equations: 

L 

l,g  = 1, 2,  .. . ,  L + 1, ( 3 )  

where  L i s  t h e  number o f  c o n s t a n t  p e r t u r b a t i o n s  a l o n g  t h e  c o o r d i n a t e ,  f o r  example ,  t h e  number 
o f  i s o t h e r m a l  zones  on t h e  s u r f a c e ;  g r  I = g r I ( k ,  ~) i s  t h e  r e s p o n s e  ( t e m p e r a t u r e  f i e l d )  o f  
the structure to a unit perturbation v r = i, which is constant in time and as a function 
of the coordinate, on the part r of the surface and is equal to zero elsewhere on the sur- 
face; V~r!= V~r(~) is the perturbation in the ~-th experiment and is constant on the part 
r of the surface and is time dependent; g~ = gl (k, T) is the response of the construction 

L 

in the I-th experiment to the time-dependent total perturbation ~v~r which is different 

on different parts r of the surface. 

The number of isothermal zones is chosen in the usual manner, starting from the de- 
sired approximation accuracy. The locations where the zones meet the arithmetic-mean values 
of the perturbations are used. In Eq. (3) any component can be found. The number of equa- 
tions obviously must not be less than the number of unknowns, and thus the minimum number 
of required experiments is equal to the number of isothermal zones, if there is no sym- 
metry (see below). In addition, the experiments, in contrast to the experiments described 
by Eq. (I), must not be similar to one another along the perturbation profiles on the sur- 
face of the structure. Otherwise the same conditions as in the first method must be satis- 
fied. 

The difficulty of using Eqs. (3) in practice lies in the fact that special experiments 
must be performed in order to obtain responses to a perturbation that is constant in time 
and as a function of the coordinate on part of the surface and is equal to zero elsewhere 
on the surface, i.e., so-called transfer functions, and in order to find these functions 
by solving inverse problems on the basis of data on gl and V~r a large volume of calcula- 
tions, in which errors accumulate, must be performed. 

If the number of coordinates of the interior points of the construction is equal to 
the number of zones L of the perturbations and the number of experiments K = L, the system 
(3) can be approximated by the finite-dimensional block-matrix approximation 

I , G  = 6 :~V ,  (4) 

and t h e  i n t e r e s t i n g  (L + 1) c a s e  can be w r i t t e n ,  c o r r e s p o n d i n g l y ,  as  

l~+g -~ G : . v ,  (5)  

where  G I = [ g k r i I ] ,  G = [ g k r i ]  a r e  t h e  m a t r i c e s  o f  t h e  r e s p o n s e s  t o  a u n i t  m a t r i x  I o f  t h e  
p e r t u r b a t i o n s  and t h e  m a t r i x  o f  p e r t u r b a t i o n s  V = [ V r l i ] ,  r e s p e c t i v e l y ,  w h i l e  g = {gki} 
i s  t h e  v e c t o r  o f  r e s p o n s e s  t o  t h e  v e c t o r  o f  p e r t u r b a t i o n s  v = {Vri }. 

The c o n v o l u t i o n  o f  m a t r i c e s  (and m a t r i c e s  w i t h  v e c t o r s )  i s  p e r f o r m e d  by t h e  same r u l e s  
as  m u l t i p l i c a t i o n  o f  m a t r i c e s  and v e c t o r s ,  e x c e p t  t h a t  i n s t e a d  o f  m u l t i p l i c a t i o n  a c o n v o l u -  
t i o n  i s  p e r f o r m e d .  Thus t h e  e x p r e s s i o n  (5)  f o r  t h e  c o o r d i n a t e  k a t  t h e  t i m e  i can be r e p r e -  
s e n t e d ,  f o r  example ,  as  

L i 
I 

r ~ l  ] = 1  

I n  o r d e r  t o  f i n d  f rom Eq. (4 )  t h e  m a t r i c e s  o f  t h e  t r a n s f e r  f u n c t i o n s  G f o r  Eq. (5 )  
i t  i s  n e c e s s a r y  t o  s o l v e  i n v e r s e  p rob l ems  f o r  L s y s t e m s  o f  e q u a t i o n s  w i t h  L unknowns in  
e a c h  s y s t e m .  I f  Eq. (5 )  i s  t h e n  s o l v e d  f o r  v ,  t h e n  a n o t h e r  i n v e r s e  p rob l em f o r  a sy s t em 
w i t h  L unknowns i s  added .  Combining Eqs.  (4 )  and (5)  makes i t  u n n e c e s s a r y  t o  f i n d  t h e  
matrices of the transfer functions and leads to the equation 
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G - l * g = V - l ~ v = u ,  (7)  

where G -z and V -I are inverse matrices to the matrices G and V, and u = {Uri } is the two- 
dimensional conversion vector. 

Two systems of equations are obtained from Eq. (7): 

G * u =  l *g, (8 )  

V * u = l * v  (9)  

and t h e  p rob lem r e d u c e s  t o  t h e  i n v e r s e  p rob l em o f  f i n d i n g  u from t h e s e  sy s t ems  and t h e  
d i r e c t  p rob l em o f  d e t e r m i n i n g  t h e  r e s p o n s e s  g o r  p e r t u r b a t i o n s  v f rom t h e  s y s t e m  (8)  or  
( 9 ) ,  r e s p e c t i v e l y ,  d i f f e r e n t i a t e d  w i t h  r e s p e c t  t o  t i m e .  To f i n d  v i t  i s  b e t t e r  t o  u se  t h e  
t e m p e r a t u r e s  o f  t h e  zones  on t h e  s u r f a c e  o f  t h e  c o n s t r u c t i o n  and n o t  a t  i n t e r i o r  p o i n t s .  

I t  i s  e v i d e n t  t h a t  t h e r e  i s  an a n a l o g y  be tween t h e  s y s t e m  (7)  and Eq. ( 1 ) ,  bu t  t h e s e  
p rob l ems  can now be i n t e r p r e t e d  as  p rob lems  w i t h  s e v e r a l  (L) i n p u t s .  I n  t h e  e q u a t i o n s  t h e  
p e r t u r b a t i o n s  a r e  p r e s e n t e d  in  t h e  same form f o r  each  zone o f  t h e  c o n s t r u c t i o n :  boundary  
c o n d i t i o n s  o f  t h e  f i r s t  k i n d  ( t e m p e r a t u r e s  G s u r f  o f  zones  on t h e  s u r f a c e ) ,  s econd  k i n d  ( h e a t  
f l u x e s  Q f l o w i n g  t o  zones  on t h e  s u r f a c e ) ,  o r  t h i r d  k ind  ( t e m p e r a t u r e s  G med o f  t h e  e x t e r n a l  
medium a t  t h e  zones  o f  t h e  s u r f a c e )  w i t h  h e a t - e m i s s i o n  c o e f f i c i e n t s  ~r~,  ~ = 1, 2, . . . ,  L, 
which  a r e  c o n s t a n t  in  t ime  and a r e  i d e n t i c a l  in  a l l  e x p e r i m e n t s  f o r  each  zone .  

I n  o r d e r  t o  c o n v e r t  t h e  t e m p e r a t u r e  f i e l d s  o f  t h e  c o n s t r u c t i o n  f rom one s e t  o f  h e a t -  
t r a n s f e r  c o n d i t i o n s  w i t h  r e s p e c t  t o  t h e  t e m p e r a t u r e s  o f  t h e  medium and t h e  h e a t - e m i s s i o n  
c o e f f i c i e n t s  in  L e x p e r i m e n t s  t o  d i f f e r e n t  f i e l d s  and c o e f f i c i e n t s  gmed and ~z = c o n s t ,  
l = 1, 2, . . . .  L, i t  i s  n e c e s s a r y  t o  employ in  t h e  (L + 1) e x p e r i m e n t  ( c a s e )  in  t h e  equa-  
t i o n s  t h e  r e l a t i o n  be tween t h e  b o u n d a r y  c o n d i t i o n s  o f  t h e  second  and t h i r d  k i n d s .  I n  t h e  
c a s e  when t h e  h e a t  f l u x  i s  r e l a t e d  l i n e a r l y  w i t h  t h e  d i f f e r e n c e  o f  t h e  t e m p e r a t u r e s  o f  t h e  
medium and the surface (Newton's hypothesis) 

. med sure 

we obtain from Eq. (7), using Eq. (i0), 

[DQ ~- 6~"rf .  U = ] * s 

(1o) 

( i l )  
where Q = [qrzi], Gsurf = [gr~i surf] are matrices of the heat fluxes and surface tempera- 

tures in the experiments; gmed = {grimed} is the vector of temperatures of the medium in 

the case of interest; D is a diagonal matrix, consisting of quantities that are the inverses 
of the heat-emission coefficients in the case of interest. 

The temperatures of the surface and at internal points of the construction are cal- 
culated as before by solving Eq. (8) after u has been found. 

The case of perturbations that are constant in time but are different on different 
sections of the surface of the construction is a particular case and is obtained from Eqs. 
(8), (9), and (ii) by replacing the convolution operations by multiplication (a system of 
linear algebraic equations is solved). The variant in which the perturbations are time 
dependent and spatially similar in two experiments also follows from these equations and 
is described by Eq. (i). 

The problems are simplified and the volume of calculations is reduced if the construc- 
tion has a center, axis, or plane of symmetry. In this case its surface is partitioned 
into equal areas, arranged symmetrically with respect to its zone center (axis). An ap- 
propriate choice of points at which the temperature is measured, also arranged symmetrical- 
ly, within the construction makes it possible to reduce the number of experiments, right 
down to one experiment, but with coordinate-dependent (and time-dependent, but better con- 
stant in time) perturbation. The missing elements in the matrices are filled in according 
to the principle of cyclic substitution, based on the symmetry of the results, with suc- 
cessive imaginary rotations of the construction or perturbations (equal to the number of 
zones); this procedure is equivalent to new experiments. In the process) in separate neigh- 
boring zones the perturbations can be equal to one another. It is only necessary that the 
convolution determinant of the system be different from zero. 
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The inverse problems (5), (8), (9), and (ii) are described identically by the system 

,4 ~ u = f ,  (12) 

where A and f are a three-dimensional matrix and the two-dimensional vector of initial data 
and u is the two-dimensional solution vector. 

The system (12) can be conveniently solved in terms of the convolution determinants, 
i.e., determinants which are calculated by replacing multiplication by convolution. After 
these determinants are found the inverse problems are solved: 

A * u~ = At, (13) 

where h and A r are the convolution determinant of the matrix A and the determinant obtained 
from & by replacing the elements in the r-th column by elements of the vector f; u r = Ur(~) 
is the one-dimensional solution vector for the coordinate r. 

The system (13) can be combined with (8). Then 
L 

A* g = ~gr ,Ar, (14) 
r = l  

which  i s  c o n v e n i e n t  c o m p u t a t i o n a l l y :  t h e  r i g h t - h a n d  s i d e  i s  found  and t h e  i n v e r s e  p rob lem 
o f  d e t e r m i n i n g  g i s  s o l v e d .  

The method o f  s o l v i n g  i n v e r s e  p rob l ems  w i t h  p r e c a l c u l a t i o n  o f  t h e  c o n v o l u t i o n  d e t e r -  
m i n a n t s  has  c e r t a i n  l i m i t a t i o n s .  I f  t h e  t ime  expended on t h e  o p e r a t i o n  o f  one c o n v o l u t i o n  
i s  p r o p o r t i o n a l  t o  t h e  s q u a r e  o f  t h e  number o f  t ime  p o i n t s  and i s  n o t  t o o  long  ( s e c o n d s ) ,  
t h e n  in  c a l c u l a t i n g  o n l y  one d e t e r m i n a n t  ( u s i n g  Cramers r u l e )  t h e  number o f  o p e r a t i o n s  i n -  
c r e a s e s  a p p r o x i m a t e l y  as  t h e  f a c t o r i a l  o f  t h e  d i m e n s i o n  o f  t h e  d e t e r m i n a n t .  I t  i s  o b v i o u s  
t h a t  f o r  more t h a n  f o u r  o r  f i v e  zones  (and when t h e  s t r u c t u r e  has  no symmet ry ) ,  a d i f f e r e n t  
c o m p u t a t i o n a l  s t r a t e g y  must  be employed .  I n  t h i s  c a s e ,  i t e r a t i o n  me thods ,  f o r  example ,  
such  as  G o l d ' s  method and t h e  method o f  d i r e c t e d  d i v e r g e n c e ,  can be used  t o  o b t a i n  an ap -  
p r o x i m a t e  s o l u t i o n  o f  t h e  s y s t e m  ( 1 2 ) ,  as  in  t h e  c a s e  o f  t h e  sy s t ems  (1)  and ( 2 ) .  I n  t h e s e  
methods  t h e  n + 1 a p p r o x i m a t i o n  i s  found  as  

un+ I : u n A T ~ [ 
A ~ ( A ~ u )  ' (15)  

where A T i s  t r a n s p o s e  o f  m a t r i x  A. 

The a d v a n t a g e  o f  t h e  f o r m u l a s  ( 1 2 ) - ( 1 5 )  l i e s  in  t h e  c o m p a c t n e s s  and u n i f o r m i t y  o f  t h e  
c a l c u l a t i o n s .  Th i s  has  been implemented  in  t h e  REMIS p rogram.  

The p rogram p r o c e s s e s  t h e  e x p e r i m e n t a l l y  o b t a i n e d  s t a r t i n g  d a t a ,  which  a r e  g i v e n  a t  
u n e q u a l l y  s p a c e d  moments in  t i m e ,  by n o r m a l i z i n g ,  smoo th ing  when n e c e s s a r y ,  and i n t e r p o l a t -  
ing  t h e  d a t a  so as  t o  a c h i e v e  a u n i f o r m  t ime  g r i d .  Cubic  s p l i n e s  a r e  used  f o r  s m o o t h i n g  
and e x p o n e n t i a l  s l i n e s  a r e  u sed  f o r  i n t e r p o l a t i o n .  

The possible symmetry of the structure is taken into account. Then it is sufficient 
to introduce starting data for one experiment, starting from the principle of cylic sub- 
stitution. The computing time is proportional to the squared number of time points, the 
number of zones, and the number of iterations. For a SM1420 computer with i00 iterations 
and 12 zones with 25 time points the computing time is equal to approximately 50 min. 

The calculation of the determinants reduces to integration procedures and if the com- 
putational step is sufficiently small, it introduces virtually no errors (the step is 
chosen on the basis of the desired accuracy of integration by the trapezoidal method). The 
iteration methods for solving the systems terminate when a prescribed degree of discrepancy 
is achieved. Numerical modeling [i, 3] of the accuracy of the solutions obtained for the 
inverse problems by the methods employed showed that the accuracy is not lower than the 
accuracy of the initial data. The program contains test samples, in which simple analytic 
functions (of the exponential type) are employed as the initial data. 

The application of the two methods, described above, for determining the temperature 
fields of constructions and a comparison of the results obtained using them can be clearly 
illustrated for a model example. Let the structure be symmetric (infinite cylinder or a 
sphere) and let its surface be partitioned by a plane into two (left- and right-hand) 
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zones of equal area. The temperatures of the zones in the first experiment vary in time 
as Vlz = [i - exp(--T)] and v21 = [i - exp(-2T)] (the maximum difference is equal to 25% 
and appears at �9 = 0.7). Inside the structure at points of interest k I and k2, arranged 
symmetrically at equal distances and under the same angles relative to the center, the 
temperatures are glz = [I - exp(-0.3T)], g21 = [I - exp(-0.4~)] (the largest difference 
is equal to 10% and occurs at �9 = 2.9), and the temperature at the center, the point k0, 
is equal to g0z = [i - exp(-0.1T)]. Since there is symmetry, a second experiment can be 
imagined with the conditions v12 = v2z ; v22 = Vll and therefore g12 = g21, g22 = glz, and 
g02 = g0z. The limiting case in which the change in the temperature is the same on the 
entire surface of the structure and, in particular, the case close to a jump-like change 
v I = v 2 = [i - exp(-p~)] as p § =, is of interest. Then from Eqs. (9) and (14) we obtain 

gh ~ A = (ghl -~- gk2) * A1, ( 1 6 )  

with k = kz, k = k 2, k : k0, respectively, i.e., the temperatures at the points of interest 
can also be found from Eq. (I), and in so doing it is convenient to employ the arithmetic- 
mean values (Vll+ v12)/2 and (gkl + gk2)/2. 

For the functions used in the example to describe the changes in the temperatures of 
the structure in the experiments 1 and 2, analytic solutions determining the temperature 
of the construction are obtained from Eqs. (I) and (4) with a practically jLunp-like change 
in the temperature of the left-hand, right-hand, and both isothermal zones of the surface. 
Comparison shows that the discrepancies in the solutions do not exceed 5% of the average 
values. If, however, the zones v 2 and v I of the surface are used to determine the tempera- 
ture far from the points k I and k2, then the discrepancies increase to 10%, but from the 
physical standpoint this is not justified. 

NOTATION 

Here T is the time; k = k(x, y, z) is the coordinate; r, 4 and i are the instan- 
taneous number of isothermal coordinate zones of the thermal perturbation, the experiment, 
and the time point; R, L, and N are the total number of coordinates of the zones, experi- 
ments, and time points; gk ~ is the temperature in the i-th experiment at the coordinate k; 
gkr I is the temperature at the coordinate k with a unit jump-like perturbation in the zone 
r and zero perturbation in other zones; g(med/re), g(surf/re), Vr~ , qr ~, ~r ~ are the tem- 
perature of the medium, the temperature of the surface, the perturbation, the heat flux, 
and the heat-emission coefficient in the r-th zone and the ! -th experiment; G, V, and Q 
are three-dimensional matrices of the temperatures, perturbations, and heat fluxes; A is 
the convolution determinant; *, I, T, and -i designate convolution, unit perturbation, 
transposition, and inversion. 
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